Pages

Showing posts with label Soil Health. Show all posts
Showing posts with label Soil Health. Show all posts

Sunday, 30 October 2016

Growing, Preparing and Storing Your Leafy Greens

Beet, mustard and dandelion greens. Boston, bibb and butter lettuce. Romaine, collards, Swiss chard, arugula — you get the idea. The plethora of leafy vegetables available at virtually every grocery store and farmers market is enough to make your thumbs turn green.

October 24, 2016

Growing Leafy Greens

Story at-a-glance

  • Growing your own leafy greens is easier than you might think, starting with good soil and paying attention to hardiness zones and harvesting techniques
  • You can ferment your own leafy greens to make them even more nutritious and keep them for months at a time right on your counter
  • A simple recipe for brine consists of chlorine-free water and sea salt or kosher salt, poured into sterilized jars packed with your favorite greens
  • Lacto-fermentation is an ancient practice used across millennia and cultures to preserve food and keep fresh food longer than you could even by putting them in your refrigerator
By Dr. Mercola
Beet, mustard and dandelion greens. Boston, bibb and butter lettuce. Romaine, collards, Swiss chard, arugula — you get the idea. The plethora of leafy vegetables available at virtually every grocery store and farmers market is enough to make your thumbs turn green.
Maybe you've tried a variety and stock your crisper drawer with leafy greens on a regular basis. Others, however, are at a loss. It only takes a few adventurous gambles that end up as wilted garbage fodder to make a chef vow to stick to tried-and-true varieties.
But if you know how to make these nutritious and delicious greens a part of your daily meal plan without losing them to the quirks of your refrigerator, you may want to try something new.
Further, did you know you can ferment your own leafy greens to make them even more nutritious and keep them for months at a time right on your counter?
Taking a look at one of the first steps toward incorporating more greens into your life — the garden — you'll find leafy greens to be one of the easiest veggies to grow. Lettuce comes in numerous varieties, including red and green leaf, buttercrunch and butterhead, iceberg, Romaine and mesclun, the so-called "fancy" lettuce.
What these all bring to your table is a lovely combination of frilly and flat, crispy and buttery and an array of hues from red to green. They're high in fiber, which helps food move more smoothly through your colon. Vegetarian Nutrition says they're:
"Rich in folic acid, vitamin C, potassium and magnesium, as well as containing a host of phytochemicals, such as lutein, beta-cryptoxanthin, zeaxanthin and beta-carotene …
Because of their high magnesium content and low glycemic index, green leafy vegetables are also valuable for persons with type 2 diabetes."1

Growing Leafy Greens: Soil

If you like the idea of "eating local," you can't do much better than your own backyard. Every plant-based food likes good soil, so make sure yours has the nutrients your plants will need, and no chemical fertilizers or polymers.
Organic dirt is good, but the best mixes contain lightweight organic matter and drain well.
Planet Natural suggests a simple, even mix of peat moss or mature compost, plain topsoil and perlite.2 Keep in mind that plain garden dirt is often too heavy and hard, so plants can't thrive.
Generally speaking, most lettuce varieties are cool-weather crops, meaning they thrive on 60- to 65-degree F days. As for the soil, Heirloom Organics says:
"Lettuce is tolerant of a wide range of soils, but prefers well-drained, cool [and]loose soil with plentiful moisture and pH 6.2 to 6.8. Sensitive to low pH. Lime to at least 6.0. To encourage tender and tasty growth, make sure location is rich in organic compost matter. Amend prior to planting if needed."3

A Word About Hardiness Zones

The United States Department of Agriculture (USDA) has divided the U.S. into color-coded zones separating regions of plant hardiness in average winter temperatures (or, gardeners can simply type in their ZIP codes).
If your plant hardiness zone is palest blue, for instance, you're in zone 5b, meaning the soil at its coldest will be -10 to -15 degrees F below zero.4
While young lettuce loves the sun, the paradox is that too much heat — say, 75 degrees F or warmer during the day — will encourage the plants to bolt or "go to seed," meaning they jump-start to the end of the growing season by shooting upward and flowering. Bolted lettuce is bitter, slightly tough and often rusty.
To offset bolting, it helps to plant your organic lettuce seeds (or baby plants, called seedlings) in areas of your garden where it's shaded for part of the day.
Because they like cool weather, lettuce seeds can be planted directly into your garden as soon as you can get a hoe in the ground in early spring. In the fall, prepare the soil by working in some compost or manure and raking it evenly.

Essential Lettuce-Growing Tips

You can also start seeds indoors around six weeks before the last frost to give baby lettuce (and other veggies) an advance on the season, especially if yours is a short one. Warmer climates can squeeze in a late greens planting; just keep in mind that mature plants don't take frost as well as seedlings. Tips for growing lettuce include:
  • Lettuce seeds have shallow roots, so they only need 6 or 8 tablespoons of soil each, whether you put them in a shallow pan of soil or (clean) separate pots.
  • Seeds need light to germinate, so sprinkle just a tiny amount of soil over them.
  • They take up minimal space on a (warm) sunny window ledge or under a grow light.
  • Water or spritz them lightly, and they'll begin popping up within a matter of days.
  • If you get a "freak" cold snap, seeds will do okay under the ground; seedlings can be covered with plastic cups overnight. Don't forget to remove them in the morning so the plants can get the sunlight they need.
When they get two to three leaves each, "harden" the seedlings by reducing their water and placing them in a cool place for a few days. Then set the seedlings 12 to 18 inches apart (depending on the variety), thinning out the smaller ones.
In 60 to 70 days, you can begin cutting off the outer leaves so the inner leaves can continue to grow and produce. "Micro" greens are simply smaller leaves. You can also harvest an entire plant, cutting them about an inch from the ground. Harvesting every other one allows those remaining to get larger.
Grown similarly to lettuce, arugula and watercress have a faster growing season, so harvesting can be done sooner and more often.
Brassica veggies like cabbage can be planted from seed or transplanted in the spring 12 to 24 inches apart, with rows 18 to 36 inches apart. Growing them in the fall gets your pantry ready for hearty winter meals.
In the garden, they need consistent water with good drainage and lots of organic matter. Floating row covers (fabric) help protect them from pests.
Mature cabbage heads can split when there's rain after a dry period. Avoid this by choosing a split-resistant variety, spacing the plants close together, or twisting the heads to break some of the roots.
Also, mulch them to retain moisture, rotate the crop every third year, and control pests such as aphids and worms using natural methods.

Not Just Sauerkraut, You Can Ferment Your Greens, Too

Whether or not you grow your own greens, you can purchase something like the presently trending kale, collard greens or Swiss chard and ferment them as easily as cabbage, using as few as two or three jars at a time in just a few hours. The following method was inspired by a blog called Simply Homemaking.5
Start by making your brine, which consists of 1 quart of chlorine-free water and 3 tablespoons of sea salt or kosher salt per jar. (Table salt has additives.) Allow the mixture to boil, then cool it to room temperature.
  • Soak your greens in large amounts of cold water, then rinse them again. A salad spinner saves time in removing the excess water, in batches, with a large pan on the side to put them into.
  • Strip thick ribs from the leaves, then slice them lengthwise into narrow strips. Keep a few leaves intact to place on top so the others stay under the brine.
  • Sterilize your jars (large mouth jars work best), rings, lids, a large-mouth funnel and a stone the size of a child's fist to hold the veggies under the brine in each jar. Place them in a large stock pot and boil, removing the jars with a clamp.
  • Put a teaspoon of caraway seeds into the bottom for flavor and fill each jar with greens, packing them down tightly, mashing them with a pestle. When full to an inch below the lowest ring of the jar, place a whole leaf on top, then a stone.
  • Pour brine into the jars to just below the lowest ring. A clean knife insert on the side will help remove air bubbles before adding the lid tightly.

What Is Lacto-Fermentation?

Sauerkraut is fermented cabbage. Kimchi is the Korean version of pickled vegetables with the frequent addition of spices to liven your palate. Lacto-fermentation is the process created by "good" bacteria called Lactobacillus, which is present on all plants, especially those closest to the ground, and can convert sugars into lactic acid. As Cultures for Health explains:
"Lactic acid is a natural preservative that inhibits the growth of harmful bacteria … Beyond preservation advantages, lacto-fermentation also increases or preserves the vitamin and enzyme levels, as well as digestibility, of the fermented food. In addition, lactobacillus organisms are heavily researched for substances that may contribute to good health."6
The Cultured Club tells the story of a woman who saw for herself what fermented veggie juice, aka pickling brine, looked like under a microscope:
"Through the eye of the lens, there dancing in front of me, I could see these 'living foods' buzzing, teeming and vibrating with life. When you eat these living, fermented foods, you feel the 'life' they impart. These are high vibrational foods which have gone through a process of 'lacto-fermentation.' This is where natural bacteria feed on the sugar and starch in the food creating lactic acid and you can clearly see them continually buzz around."7
Lacto-fermentation is an ancient practice used across millennia and cultures to preserve food. Combinations of vegetables can introduce different levels of heat and flavor, such as fermenting cabbage with spicier greens such as turnip or mustard greens. However, brassica vegetables are goitrogens, so begin eating them in small portions. Below is simple recipe for lacto-fermented collard dip, from Cultures for Health,8 which you can tweak however you wish.
Lacto-Fermented Collard Dip
Ingredients
1.8 cups fresh, young collard leaves, washed and coarsely chopped
2.4 cloves garlic, peeled
3.1 to 1/2 tsp. sea salt
4.3 Tbsp. whey
5.Filtered water, as needed
Instructions
1.Steam collards over salted water until cooked but still somewhat firm. Drain and cool them completely.
2.Place the cooled collards leaves with the garlic, salt and whey into a food processor and pulse until the mixture is slightly chunky.
3.Transfer the dip to a sanitized, wide-mouth quart jar. Add more water if necessary to cover, but packing it down with a spoon will create more juice.
4.Cover with an air-tight lid and set it aside to ferment, room temperature, for two to three days, away from drafts and direct sunlight.
5.Place the dip in cold storage and it will keep for several weeks.

You Might Also Like






http://articles.mercola.com/sites/articles/archive/2016/10/24/growing-leafy-greens.aspx

Wednesday, 26 October 2016

Environmental Signs Suggest Atrazine Is Becoming a Serious Health Threat

Europe Banned This 'Gender-Bender' in 2005, but You Likely Eat and Drink It Daily
Research links it to genital deformations in young boys, and leukemia, lymphoma and ovarian and thyroid cancers, but the US still allows it to be in your water and food. A whopping 75 percent of Americans have detectable levels of this and similar compounds in their urine. Here's one way to help your body break it down.

Water Chemicals

Story at-a-glance

  • Atrazine is the second most commonly used herbicide in the U.S., with more than 73 million pounds being applied to golf courses, lawns and food crops each year
  • Testing reveals 85 percent of male smallmouth bass in American wildlife refuges now carry eggs. The lowest incidence of feminization or intersex was 60 percent; the highest was 100
  • Atrazine is the one most commonly found pesticide in U.S. drinking water, and studies have linked atrazine exposure to impaired sexual development, some cancers, birth defects, insulin re
October 19, 2016

By Dr. Mercola
Atrazine, which was approved for use in 1958, is the second most commonly used herbicide in the U.S. More than 73 million pounds of it are applied to golf courses, lawns and food crops each year.1 As just one example of its prevalence, as much as 80 percent of all the herbicides used in Vermont are atrazine-based.
Meanwhile, Europe banned atrazine in 2005 due to suspected health concerns and environmental damage, including the high risk of water contamination.
Indeed, research clearly shows that atrazine has a potent "gender-bending" impact on marine life, including fish, alligators, turtles and frogs, and many scientists suspect it may be equally harmful for humans.
Most recently, testing reveals a shocking 85 percent of male smallmouth bass in 19 American wildlife refuges, including the Missisquoi National Wildlife Refuge located near the U.S. and Canada border, are carrying eggs.

Gender-Bending Chemicals Are Turning Male Fish Into Females

In other words, a vast majority of the male fish are turning into females, and the primary culprits are estrogenic compounds such as those found in birth control pills, bisphenol A (BPA, a chemical used in plastic) and the herbicide atrazine.
Smallmouth bass are known to be very sensitive to pollutants, hence researchers use them as an "indicator species" when evaluating the ecological impact of environmental pollutants. In the case of water pollution with endocrine disrupting chemicals, the situation appears severe.
The lowest incidence of feminization or intersex in the wildlife refuges tested was 60 percent. The highest was 100.2
While some fish species are hermaphrodites, meaning they can change sex in order to protect the continuation of the species, non-hermaphroditic fish that turn into females do not contribute to species survival. On the contrary, it contributes to sterility.
By lowering immune function, this type of endocrine disruption also contributes to infections, diseases and die-offs. According to National Geographic:3
"Over the past decade, feminized male fish have been discovered in 37 species in lakes and rivers throughout North America, Europe and other parts of the world.
Experts say the new discovery in protected wildlife refuges is worrisome because it suggests that pollution may be even more pervasive than previously thought.
'There are no truly untouched areas. I think the take away here is that everything we do, everything we use or put on the land, ends up in the water at some point,' says Luke Iwanowicz, a U.S. Geological Survey fish researcher … who led the wildlife refuge study."
Intersex prevalence among largemouth bass at these 19 sites were about 27 percent, and in previous testing done at eight U.S. river basins, including the Mississippi, Rio Grande and Columbia Rivers, about 33 percent of male smallmouth bass had changed gender.

Atrazine Is a Common Pollutant in Drinking Water

Perhaps most disturbing is the fact that in wildlife refuges, there are no identifiable sources of the contamination, which means the pollutants are spreading into the environment far more readily and/or in ways currently unknown.
This in turn raises serious questions about the extent of human exposure, and the potential effects of such exposure. As noted in the featured article:4
"Exposures to endocrine disrupting chemicals in drinking water, food and household products have been linked to health problems in people too, including reduced fertility, developmental delays in children and some cancers."
In fact, as far as pesticides go, atrazine is the one most commonly found pesticide in U.S. drinking water. In 2012, Syngenta AG and its U.S. subsidiary were ordered to pay $105 million to filter the chemical out of Midwestern community water treatment operations providing drinking water to 52 million Americans.5,6  
The legal proceedings revealed that as many as 1 in 6 Americans were drinking atrazine-contaminated water. The $105 million settlement was really just a drop in the bucket when compared to the actual cost of filtering this chemical.
In 2010, the plaintiffs' attorney, Stephen Tillery, said the 16 cities included in the original lawsuit had already spent about $350 million to filter it out. Since 2012, at least 1,085 other compensation claims over atrazine contamination have been filed against Syngenta, suggesting the problem is incredibly widespread.7

Atrazine Linked to Harm in Humans  

The legal limit for atrazine in drinking water, set by U.S. Environmental Protection Agency (EPA), is 3 parts per billion (ppb). This is the equivalent of three drops in an Olympic-sized swimming pool.
Syngenta and other atrazine proponents insist that atrazine is safe for the simple fact that it's been used for over 50 years, but mounting research suggests otherwise. For example:
  • Research has linked atrazine exposure in utero to impaired sexual development in young boys, causing genital deformations, including microphallus (micropenis)
  • The evidence also suggests atrazine exposure may contribute to a number of different cancers, specifically ovarian cancer, non-Hodgkin's lymphoma, hairy-cell leukemia and thyroid cancer8,9,10
  • Elevated concentrations of atrazine in drinking water have been associated with abdominal birth defects, including gastroschisis (in which the baby's intestines stick outside of the baby's body) and others
  • Animal research also suggests long-term exposure to atrazine may induce insulin resistance and weight gain by lowering energy metabolism11
  • Endocrine disrupting chemicals like atrazine are also implicated in lowered fertility and infertility12

EPA's New Risk Assessment Acknowledges Serious Hazards

On June 6, 2016, the EPA released a new risk assessment for atrazine.13 Its current view of the chemical suggests the agency might lower allowable levels and issue tighter regulatory limits on the chemical. There's even the possibility of an eventual ban.
The risk assessment concluded the chemical may cause reproductive harm to mammals, fish and birds, with the level of concern surpassed nearly 200-fold using real-world scenarios for mammals. (An EPA "level of concern" describes the threshold above which a chemical may be expected to cause harm.)
For fish and birds, atrazine exceeded the level of concern by 62- and 22-fold, respectively. A number of organizations, including the Organic Consumers Association14 (OCA) and Beyond Pesticides,15 created petitions urging Americans to push for a complete ban on atrazine. As noted by Beyond Pesticides:
"In July, California's Office of Environmental Health Hazard Assessment (OEHHA) announced that atrazine, its chemical cousins propazine and simazine, and its breakdown triazine compounds would be added to the list of chemicals known to the state to cause reproductive toxicity for purposes of the state's Proposition 65.
The evidence is clear. Atrazine harms wildlife, persists in soils and moves easily through waterways."

Big Ag Fights to Keep Atrazine

The EPA's public comment period ended on October 5. Time will tell whether the agency will take appropriate measures to protect environmental and human health from this pernicious endocrine disruptor. Not surprisingly, the pesticide and agriculture industries are up in arms over the EPA's new assessment.
ChemChina, which has bid to acquire Syngenta, said the EPA's report "contains numerous data and methodological errors and needs to be corrected."16
The Iowa Corn Growers Association has also spoken out against the report, saying it would "effectively ban the product from most uses" if finalized as currently written. As noted by Journal Sentinel:17
"Farm groups, including the Wisconsin Corn Growers Association, the Cooperative Network, Wisconsin Pork Association, Midwest Food Processors, the Dairy Business Association, Wisconsin Farm Bureau Federation and the Wisconsin Soybean Association, have asked farmers to contact the EPA and urge the agency to reconsider its position …
'For more than 50 years, atrazine has been a safe and effective crop protection tool to control the spread of resistant weeds and improve crop yields. … EPA's action would drive up the cost of production to Wisconsin corn growers and would reduce our yields,' said Casey Kelleher, president of the Wisconsin Corn Growers Association."

Harmful Toxin or Conservation Aid?

A ban on atrazine would be the BEST scenario for farmers and consumers alike, yet some farm groups have gone so far as to say the EPA's plan to limit atrazine's use would actually HARM the environment! According to Tom Liebe, president and CEO of Cooperative Network, an alliance of co-ops in Wisconsin and Minnesota:18
"Atrazine plays an important role in conservation tillage,19,20 a farming practice that reduces soil erosion and runoff. An atrazine ban would require more soil tillage to control profit-robbing weeds and will be a net-negative for the environment."
Conservation tillage refers to the practice of applying atrazine to suppress or kill leftover vegetation in the field before the new planting season. The use of the chemical allows farmers to till the soil less, which reduces soil erosion and related problems. As explained by Penn State's introduction to weed management for conservation tillage systems:21
"An important benefit of tillage is weed control. In conservation tillage agriculture, the grower relies on the same weed management practices as in more conventional tillage systems but eliminates most or all of the tillage operations. Therefore, in limited tillage systems, there is greater dependence on cultural and chemical control options …
Chemical weed control remains an important pest management tactic in reduced-tillage agriculture. Regardless of how effective cultural control strategies are, herbicides provide a way to manage weeds successfully with little or no tillage … Chemical approaches are based on timing of herbicide application and include burndown, soil residual, and postemergence treatments."

True Regenerative Farming Is Non-Toxic

The idea that a toxin like atrazine would somehow be necessary for environmental conservation is ludicrous of course, and this is a perfect example of spinning a negative into a positive by appealing to people's growing concern about the harm being done by conventional agriculture.
Some conventional farmers also worry that increased restrictions on atrazine might result in lower yields and loss of income at a time when crop prices are already at a record low. While financial concerns are valid, at some point the greater good really must come into the equation, and when it comes to atrazine, that time is now.
There are other, far safer ways to reduce soil erosion and chemical runoff than using atrazine. Besides chemical application, strategies that facilitate no-till farming include:22
  • Crop rotation
  • Pasture cropping
  • Use of livestock on the land
  • Mulching

Non-Toxic No-Till Can Work Just as Well



This lecture by Gabe Brown, who is an international leader in soil health and sustainable farming techniques, describes processes that help build healthy soils and the importance of no-till. By 2012, Brown's family farm, which consists of 5,400 acres in North Dakota, had reduced its herbicide use by 75 percent.
His intention is to eliminate it entirely by introducing other weed control techniques. Importantly, from a financial perspective, by cutting input costs, Brown has decreased his production costs, which has resulted in higher profits.
How this was accomplished is described in the Brown's Ranch no-till case study published by the National Sustainable Agriculture Information Service in October 2012.23 I've also interviewed Brown on his techniques, which you can read about in my previous article, "How to Regenerate Soil Using Cover Crops and Regenerative Land Management."
The take-home message is that you do not need toxins to farm profitably. Atrazine, which like DDT and PCBs is chlorine-based, can persist in soil for 22 years!24 Considering the clear danger it poses to marine life, and the impact it might have on human health over time, it's unconscionable to suggest atrazine is a farming necessity or a critical conservation aid. It is a toxic pollutant that threatens the entire food chain.

How to Protect Yourself From Atrazine and Other Pesticides

According to data from the U.S. Centers for Disease Control and Prevention (CDC), more than 75 percent of the U.S. population has detectable levels of pesticides in their urine, and unless you're a farmer, your diet is one of the most likely routes of exposure, along with your drinking water.25
Eating organic is one of the best ways to lower your overall pesticide burden. The largest study26 of its kind found that people who "often or always" ate organic food had 65 percent lower levels of pesticide residues compared to those who ate the least amount of organic produce. Organic produce also had, on average, 180 times lower pesticide content than conventional produce.27
If you need to prioritize, refer to the Dirty Dozen list and buy organic as much as possible when you're choosing foods that are listed as the most-contaminated. If you shop at farmers markets, which I strongly recommend, you can also ask the farmer directly about pesticide usage.
It's possible to find produce that is not certified organic that may still have a lower pesticide burden than typical conventional produce depending on the farmer. So if you can't find organic produce, look for a local farmer who has eliminated pesticide use (or uses a minimal amount of such chemicals).

Filtering Your Tap Water Is Important to Reduce Atrazine Exposure

As mentioned, atrazine is the most commonly detected pesticide in U.S. water supplies, so I recommend filtering your tap water — both for drinking and bathing. To remove atrazine, make sure the filter is certified to remove it. Fortunately, since it is a relatively large organic molecule it is easily filtered by a quality carbon filter. As noted by the Natural Resources Defense Council (NRDC):28
"Consumers should make sure that the filter they choose is certified by NSF International to meet American National Standards Institute (ANSI) Standard 53 for VOC (volatile organic compounds) reduction and therefore capable of significantly reducing many health-related contaminants, including atrazine and other pesticides."
Finally, if you know you have been exposed to pesticides, eat fermented foods like kimchi. The lactic acid bacteria formed during the fermentation of kimchi may actually help your body break down pesticides. In addition, there is some evidence that the antioxidant lycopene, found in watermelon, tomatoes, red bell peppers and more, may protect against some of atrazine's toxic effects.29
http://articles.mercola.com/sites/articles/archive/2016/10/19/atrazine-health-effects.aspx?